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ABSTRACT: In proteomics, peptide-tandem mass spectrum match scores and target−decoy
database derived false discovery rates (FDR) are confidence indicators describing the quality of
individual and sets of tandem mass spectrum matches. A user can impose a standard by prescribing
a limit to these values, equivalent to drawing a line that separates better from poorer quality
matches. As a result of setting narrower parent ion mass tolerances to reflect the better resolution of
modern mass spectrometers, target−decoy derived FDRs can diminish. FDRs lowered this way
consequently drive down the lower-limit for peptide-spectrum match score acceptance. Hence, data
quality confidence appears to improve even while fragmentation evidence for some spectra remains
weak. One negative outcome can be the presumed identification of peptides that do not exist. The
options researchers have to improve proteomics data confidence are not panaceas, and there may
be no satisfying solution as long as peptides are identified from a circumscribed list of proteins
scientists wish to find.

Last decade, amidst the promise of mass spectrometry to
revolutionize biological protein discovery, proteomics

researchers suddenly realized there was a problem. Peptide-
spectrum match algorithms were making false matches between
tandem mass spectra and candidate peptide sequences at
unspecified rates, hurting the credibility of an emerging field.1,2

In short time, however, the proteomics community rallied and
developed a variety of statistical methods to model and limit
false peptide-spectrum matches (PSMs).3 One of the first
programs to do so, PeptideProphet, estimated a probability of
certainty for each PSM made by Sequest.4 Around the same
time, Mascot was configured to calculate an Expect value based
on the total number of peptide match candidates.5,6 This
allowed the user to assess the likelihood that a PSM occurred
by chance. Meanwhile, X! Tandem, another match algorithm,
grew in popularity because of its own PSM confidence
indicator, the Expectation value (E-value), which was based
on the distribution of all matches for a spectrum.7 As more
match algorithms were developed, confidence indicators that
utilized statistical and probability models became common-
place, and the means by which the scores describing PSMs were
calculated were ever more innovative and varied.3 For example,
MS-GFDB creatively employed a generating function derived
from combinatorics to calculate the significance of a PSM.8,9

Although these confidence indicators were intended to limit
individual false matches, not all indicators correctly predicted
the statistical rate of false matching across a set of PSMs.10,11 A
better indicator for this became known as the peptide false
discovery rate (FDR), and soon scientists devised numerous
ways to limit FDRs. The target−decoy method for FDR
estimation became the most popular because it is easy to
implement.3 A researcher needs only to search definitive false
peptide sequences (decoys) alongside target, candidate
sequences. Then, to calculate the FDR, the researcher needs

simply to establish a ratio of known, decoy false positive (FP)
matches over all positive PSMs or set a PSM score lower limit
to establish an FDR. The target−decoy method reasonably
approximates FDRs, but it is not without its statistical
deficiencies.12−14 Furthermore, there is no consensus about
how target−decoy should be used with each match algorithm
or which “scores” are most suitable. This complicates
comparisons of FDR estimates across different research
applications. Thus, false data continue to nag proteomics.
More than once when looking for ways to improve data

confidence, I noticed that several prominent research groups
had published data sets associated with reasonably low FDRs
but with PSMs having abnormally low Mascot Ions scores (16-
0.1).15 I found this unusual; I would have not expected such
low scores to be associated with such low FDRs. Because
abnormally low-scoring spectra have poorly discernible
fragmentation ion series important for peptide sequence
elucidation, I speculated that their identifications were instead
predicated on parent ion mass matching.15 I then hypothesized
that as the numbers of peptide candidates are reduced through
narrow parent ion mass tolerance (PIMT) parameters, thereby
shifting from fragment ion to parent ion mass matching
conditions, FDRs estimated by target−decoy database search-
ing would drop, driving down the lower limit for Ions score
acceptability.15 I suspected that this would inadvertently lead to
the acceptance of matches between spectra with insufficient
fragmentation evidence and a few restricted peptide candidates
in a narrow mass range.15
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I had hoped my hypothesis would motivate other scientists
to look at this problem, especially since improvements in mass
spectrometer resolution and data refinement would continue to
encourage researchers to lower PIMT parameters.16 Indeed, my
essay struck a nerve. Some researchers agreed with my
hypothesis about FDRs while others disagreed.5,17 Now to
affirm it, I provide data proving that target−decoy FDRs can
decrease as PIMTs or numbers of peptide candidates shrink.
This trend holds true for three match algorithms that employ
different scoring systems. I also expose a shortcoming
associated with calculating FDRs with Mascot Expect values
under narrow PIMT parameters. Comfort in PSM data quality
confidence remains questionable as a result.
To test my notion of decreasing target−decoy FDRs as

PIMTs shrink, I used 716 088 tandem mass spectra from an
opgGH null mutant of Salmonella enterica grown under osmotic
stress.18 The mutant cannot produce OpgG or OpgH, proteins
required for osmotic tolerance. I will return to these deleted
proteins, but let me remark that I also chose to examine S.
enterica because of its small genome. Its derived protein
sequence data file (4914 records) used for peptide-spectrum
matching is more likely to lead to many of the negative effects
of constrained PIMT search parameters, such as an insufficient
number of candidates for the statistical modeling of false
matches.15 I then used Mascot to search the spectra under
different PIMT parameters against the S. enterica protein
sequence data file appended with the same number and lengths
of statistically randomized decoy sequences (Table 1).12

Decreasing PIMT parameters reduces the number of candidate
peptide sequences considered for spectrum matching.15 I then
estimated peptide FDRs from the top-ranking matches at
different Ions score limits for each altered PIMT using the eq
2Decoys/Positive_matches. Decoys is doubled to be a proxy
for all FPs (all FPs = bona fide FPs + Decoys ≈ 2Decoys),19

and Positive_matches is the sum of matches to Targets and
Decoys.
An Ions score is a positive indicator of the quality of a match

between a tandem mass spectrum and a candidate peptide
sequence.6 I chose it as the “score” for establishing FDRs
because Mascot Ions scores were reported in all of the papers I
previously examined.15 Another Mascot score, the Expect value,
did not appear to be a factor in those papers, at least not for
FDR calculations. Thus, my original argument was based on the
use of Ions scores for calculating FDRs, and my first intention
was to test that. As presented in Table 1 for a 10 ppm PIMT
Mascot search, the FDR progressively grew as the Ions score
limit was reduced from 25 to 10 (horizontal 10 ppm data). This
is expected because, as Ions scores decrease, the match quality
gets worse and false matching increases. The same trend
occurred at lower PIMTs, although lowering the PIMT reduced
the number of peptide candidates from the next highest PIMT
parameter and reduced the total number positive matches
(vertical positive matches data in Table 1). This is likely due to
some peptide candidates falling out of consideration. Again, this
is expected since the PIMT parameter is directly related to the
number of peptide sequence candidates.15

The disturbing observation from this data, however, is that, at
any given Ions score cutoff, the FDR decreased as PIMT
dropped (vertical FDR data in Table 1). This means that, as
PIMT decreased, decoy matches fell out of consideration faster
than all positive matches (or all positive matches did not
disappear as fast as decoys). This trend for decreasing FDRs
with each PIMT drop held true even when the decoy database T
ab
le
1.

N
um

be
rs

of
P
os
it
iv
e
M
at
ch
es
,D

ec
oy

M
at
ch
es
,a
nd

E
st
im

at
ed

FD
R
s
pe
r
M
as
co
t
Io
ns

Sc
or
e
Lo

w
er

Li
m
it
fo
r
T
an
de
m

M
as
s
Sp
ec
tr
a
fr
om

S.
en
te
ri
ca

un
de
r
th
e
G
iv
en

P
ar
en
t
Io
n
M
as
s
T
ol
er
an
ce

P
ar
am

et
er
sa

pa
re
nt

io
n
m
as
s

to
le
ra
nc
e,
pp
m

ty
pe

of
m
at
ch

m
at
ch
es

w
ith

M
as
co
t
Io
ns

sc
or
e
≥
25

FD
R
(M

as
co
t

Io
ns

sc
or
e

≥
25
),
%

m
at
ch
es

w
ith

M
as
co
t
Io
ns

sc
or
e
≥
20

FD
R
(M

as
co
t

Io
ns

sc
or
e

≥
20
),
%

m
at
ch
es

w
ith

M
as
co
t
Io
ns

sc
or
e
≥
15

FD
R
(M

as
co
t

Io
ns

sc
or
e

≥
15
),
%

m
at
ch
es

w
ith

M
as
co
t
Io
ns

sc
or
e
≥
13

FD
R
(M

as
co
t

Io
ns

sc
or
e

≥
13
),
%

m
at
ch
es

w
ith

M
as
co
t
Io
ns

sc
or
e
≥
10

FD
R
(M

as
co
t

Io
ns

sc
or
e

≥
10
),
%

10
de
co
ys

15
9

0.
38

46
9

0.
99

17
48

3.
2

31
70

5.
4

79
00

11
.9

po
si
tiv
e

m
at
ch
es

83
07
6

94
88
9

10
9
02
2

11
6
43
0

13
2
53
9

7
de
co
ys

13
9

0.
34

37
2

0.
88

13
61

2.
6

24
36

4.
3

59
87

9.
5

po
si
tiv
e

m
at
ch
es

81
78
6

93
12
7

10
6
31
7

11
2
87
4

12
6
36
7

5
de
co
ys

13
1

0.
32

32
5

0.
71

11
00

2.
1

19
09

3.
5

46
24

7.
6

po
si
tiv
e

m
at
ch
es

80
35
4

91
31
0

10
3
70
2

10
9
60
6

12
1
25
0

2
de
co
ys

10
0

0.
30

21
4

0.
57

60
1

1.
4

97
5

2.
2

22
59

4.
7

po
si
tiv
e

m
at
ch
es

66
71
5

75
31
4

84
58
2

88
66
4

96
08
2

a
O
th
er

M
as
co
t
ve
rs
io
n
2.
3.
02

se
ar
ch

pa
ra
m
et
er
s
w
er
e
±
0.
8
D
a
fr
ag
m
en
t
io
n
m
as
s
to
le
ra
nc
e,
tr
yp
tic

di
ge
st
,
st
at
ic
ca
rb
ox
ya
m
id
om

et
hy
la
tio

n
fo
r
C
,
m
on
oi
so
to
pi
c
m
as
s
va
lu
es
,
1
m
is
se
d
cl
ea
va
ge
,
an
d

C
#1
3=

1.
Io
ns

sc
or
es
,E

xp
ec
t
va
lu
es
,a
nd

qm
at
ch

va
lu
es

w
er
e
ob
ta
in
ed

fr
om

th
e
M
as
co
t
re
su
lts

fi
le
.T

he
m
ed
ia
n
pa
re
nt

io
n
m
as
s
de
vi
at
io
n
fo
r
th
is
da
ta

se
t
is
le
ss

th
an

2
pp
m
.18

Analytical Chemistry Letter

dx.doi.org/10.1021/ac303051s | Anal. Chem. 2012, 84, 9663−96679664



was created by reversing sequences between R/K characters
(Supplementary Table 1, Supporting Information). The trend
for decreasing FDRs with each PIMT drop was also true when
X! Tandem and MS-GFDB were used instead of Mascot, and
the respective PSM scores, E-values and p-values, were used to
estimate the FDRs at each limit (Supplementary Table 2,
Supporting Information).
Thus, these data support my original hypothesis that target−

decoy FDRs decrease as the number of peptide candidates
grows smaller. Nevertheless, Cottrell and Creasy previously
disputed my concept, at least with respect to Mascot results.5

Their reasoning was that if the quality of matching becomes
worse as scoring decreases (as the number of candidates gets
smaller), FDRs must get higher, not lower. Our views appear
contradictory, so I estimated FDRs using their recommended
score, the Mascot Expect, instead of the Ions score; but first, a
little background: Default Expect is pseudocoded as 0.05 ×
qmatch × 10(−Ions score/10) where qmatch is the number of
peptide candidates within a prescribed PIMT. Hence, the
equation relates fragment ion matching quality to the number
of peptide candidates. Substituting qmatch with its equivalent,
10(Identity score/10), allows direct comparison between the Identity
and Ions scores: When they are equal, Expect is 0.05. According
to the Mascot model, as Expect diminishes, there is improved
confidence that a match to any particular peptide is not
random. Note, however, that the model suffers when the
Identity score is less than 13 since it would no longer be
theoretically possible to obtain at least 1-out-of-20 peptide
match confidence (i.e., Expect = 0.05). Therefore, Mascot
thresholds the Identity score to 13 when this condition is met.5

I will show the ramifications of thresholding in the next
paragraphs. In the meantime, note it is common practice to
accept a peptide with an Expect less than or equal to 0.05,
although a researcher could prescribe an alternative cutoff.
Expect is calculated per match; no single Expect should
extrapolate to a set of different peptide matches.
The data in Table 2 show at the tested Expect cut-offs that

there was no appreciable increase in FDRs at decreasing

PIMTs. In fact, the FDRs remained consistent. Even for
separate target and decoy database searches and the appropriate
FDR calculation correction,19 this trend held true (not shown).
Therefore, Cottrell’s and Creasy’s prediction of rising FDRs is
not evident, even when using Expect values. Notwithstanding,
they could argue that it is better to use the Expect to estimate
FDRs because of the consistency of the FDRs across a series of
PIMTs. That thought, however, would be premature. At an
Expect cutoff of 0.01 for a 10 ppm PIMT, which gave an FDR
of 0.52%, the lowest Ions score for any spectrum was 19.79
(Table 2). Meanwhile, with the Ions score method to achieve a
similarly low FDR of 0.38% at the same PIMT, the lowest Ions
score for any spectrum was 25 (Table 1). This means that more
poorer-scoring spectra, in terms of Ions score magnitude, were
among the true positives when Expect values were used for
calculating FDRs than when Ions scores were used. It is difficult
to build an argument that justifies the use of Expect values for
FDR calculations when it results in the inclusion of more
poorer-scoring spectra. Worse still, as PIMTs dropped from 10
to 2 ppm for a constant (and standard) 0.05 Expect value
cutoff, the percentage of all positive matches with Identity
scores of 13 rose from 12% to 97% (Table 2). This means that
a narrow 2 ppm search reduced the numbers of candidates to
the point that it was no longer possible to ascertain 1-out-of-20
match confidence for 97% of all positive matching spectra.
Consequently, the Expect values were merely the Ions scores in
nearly all cases, and therefore, no longer reflected the true
number of trials. Hence, it is not fair to view FDRs between the
10 ppm PIMT and the 2 ppm PIMT searches in Table 2 as
being consistent because the Expect values have inconsistent
mathematical meanings. This makes it difficult to assess
whether FDRs are static or change for better or worse when
using Expect values and narrow PIMTs. More than likely
though, the artificiality of the Mascot thresholding masks the
true FDR drop, the type seen in Table 1 and Supplementary
Tables 1 and 2, Supporting Information.
Despite the Expect value breakdown, it might not be

apparent to a casual reader what is wrong with lowering the

Table 2. Estimated FDRs per Mascot Expect Upper Limit for Tandem Mass Spectra from Table 1 under the Same Search
Conditionsa

parent ion mass
tolerance, ppm

FDR (Expect
≤0.01), %b

matches with Identity scores
of 13 (Expect ≤0.01), %

FDR (Expect
≤0.05), %c

matches with Identity scores
of 13 (Expect ≤0.05), %

FDR (Expect
≤0.075), %

FDR
(Expect
≤0.1), %

FDR
(Expect
≤0.5), %

10 0.52 12 1.8 12 2.8 4.2 23
7 0.53 22 2.0 22 3.1 4.4 25
5 0.57 37 2.1 35 3.4 4.7 25
2 0.54 97 2.0 97 3.1 4.3 22

aFDR stays consistent as parent ion mass tolerance drops at any given Expect value limit, but the percentage of matches with Identity scores of 13
rises (in bold). bSmallest Ions score is 19.79. cSmallest Ions score is 12.97.

Table 3. Top-Ranking Peptide Sequences, Ions, Identity and Expect Scores, and Numbers of Candidates Considered (qmatch)
for Orbitrap-LTQ Tandem Mass Spectra from an S. enterica opgGH Mutant Grown in Low Osmotic Mediuma

protein peptide match

Mascot
Ions score
(10 ppm)

Mascot
Identity
score

(10 ppm)

Mascot
Expect

(10 ppm)

Mascot
qmatch
(10 ppm)

Mascot
Ions score
(2 ppm)

Mascot
Expect
(2 ppm)

Mascot
Identity
score

(2 ppm)

Mascot
qmatch
(2 ppm)

OpgG
GWRLMLR + Ox(M) 12.59 16.81 0.13 48 12.59 0.055b 7.78c 6
DLGFAGFKVLYPINSK 10.67 13.80 0.1 24 10.67 0.086b 4.77c 3
MRWLGAAIMLTLYASSSWAFSIDDVAK +
Ox(M)

10.24 14.15 0.12 26 no match no match 8.45c 7

aThe mutant does not produce OpgG, so the peptide matches are false. bThresholding implemented. cNonthreshold calculation.
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PIMT to get a lower FDR, especially since a low FDR is the
modern gold standard in proteomics. To understand, let us
track some specific spectra falsely matched to peptides such as
the false matches to the OpgG protein since the S. enterica
mutant does not produce it (Table 3).18 At a 10 ppm PIMT
and a 5% FDR, these bona fide falsely matched peptides were
not included among the positively matched peptides in Table 1.
However, after shifting the PIMT down to 2 ppm, but
maintaining the same 5% FDR as before, the Ions score cutoff
dropped below 10, which means that 2 of the 3 falsely matched
OpgG peptides moved from the prior false positive data set to
the positive match data set (compare Tables 1 and 3).
Therefore, in this case, parent ion mass selectivity and target−
decoy FDRs worked against each other to engender these low-
scoring FP peptide matches, hence one problem with lowering
the FDR by constraining PIMT. Yes, it is possible to limit the
FDR to 1% to prevent the movement of the FP OpgG peptides
to the true positive data set, but this is knowledge after the fact.
A user should beware that changing the FDR bar is only an
apparent fix because similar circumstances will arise for other
peptides wherever an arbitrary line is drawn.
It is possible to counter the previous example and contend

that it is meaningless to consider these matches in the first place
because they do not pass the standard Expect cutoff of 0.05, but
this plea ignores some simple facts and overlooks the point the
example makes. First, the Expect value is subject to whimsical
manipulation of search parameters such as PIMT, the numbers
of tryptic ends, missed cleavages, and variable mass
modifications. Because these parameters affect the number of
peptide sequence candidates, it is all too easy to find a favorable
setting to achieve desirable match confidence. Second, a
scientist accepting such low-scoring peptides has probably done
just that: ignored the Expect value and only considered the Ions
score. Therefore, under the extreme conditions provided by the
example, it is entirely possible to arrive at a situation where the
false matches to the OpgG peptides are considered real.
So what are the options? For Mascot users, there are basic

guidelines to follow: If the Mascot Ions and Identity score
relationship is no longer meaningful as these scores approach
zero, as I proved before,15 and if the Expect value scoring
system mathematically deteriorates near 13, then peptide
matches with Ions scores below 13 are sufficiently doubtful.
There may be no good reason to consider any lower Ions
scores.
As for target−decoy, a common way to reduce the number of

false positives is to lower the FDR limit. Unfortunately, this
may lead to unnecessary data waste. Another possibility is to
search more peptide candidates. For Mascot, this would
prevent the Expect value accuracy from nose-diving. Ironically,
widening the PIMT to accomplish this belies the benefit of
high-resolution, high-mass accuracy mass spectrometry. Widen-
ing the search space by adding more decoys to the protein
sequence data file also betrays the simple principle of estimating
FDRs using the standard target−decoy approach.
Of course, if the identification of proteins were the overall

goal, a protein level criterion may help. For example, Protein
Prophet, PANORAMICS, and other programs calculate a
protein identification probability from PSM probabilities.20−24

On the basis of the OpgG peptides in Table 3, the
PANORAMICS2 probability for the OpgG protein being
found was <10% for the 10 ppm search and 50.4% for the 2
ppm search.18 Thus, while some of the PSM data in Table 3
may be construed to imply the OpgG protein was identified,

the additional level of discrimination provided by the protein
probability model would imply that the protein was not reliably
found. Hence, the OpgG peptides would be disregarded
accordingly. One advantage of protein-probability models is
that they can be independent of decoy database searching,20−24

but the user should beware of models that rely on peptide
target−decoy FDRs to estimate protein probabilities for the
reasons presented here.25−27 Note, narrowing the PIMT may
also manipulate protein probabilities, but this additional level of
discrimination may serve as a buffer against the peptide-level
effects shown here.
In the end, there may be no remedy. This is partly because

peptide identification by tandem mass spectrometry becomes
inherently biased as soon as we set out to find the proteins
already on our list. Any affirming PSM score to a protein on
that list can give some reason to believe that it exists, even if it
is experimentally precluded. This brings to mind Pascal’s Wager
for God, where probability dictates that it is better to wager for
existence than not: that is, until one accepts that no probability
of existence is a logical option.28 The predetermined expect-
ation of protein discovery is the foundation for peptide
presumption and is the root of our chase to eliminate FPs. We
must deal with this; otherwise, poor-scoring PSMs could have a
stronger likelihood of being improbable than what the
prescribed confidence measures should indicate or allow.
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